June 29, 1979 / Vol. 28 / No. 25

Epidemiologic Notes and Reports
 289 Nosocomial Pseudomonas cepacia Infection

292 Two Suspected Cases of Human
Rabies - Texas, Washington
298 Death from Measles, Possibly Atypical - Michigan
Current Trends
290 Results of Culture Testing for GonorRHecme

Epidemiologic Notes and Reports

JUL 21979

Nosocomial Pseudomonas cepacia Infection

In January and February 1979, 3 patients in a large unively tivital faratr serious nosocomial infection with Pseudomonas cepacia attributed fithireg proxs cryoprecipitate, possibly contaminated when separate units of this substance vere combined for administration to patients.
P. cepacia organisms were isolated from blood cultures from 2 patients with septicemia and from 1 mediastinal wound infection of the other patient. The patient with the wound infection and 1 of the septicemic patients had undergone elective cardiac surgery procedures, received cryoprecipitate during their operations, and developed evidence of infection on the fifth and tenth postoperative days, respectively. The other patient, who had liver failure attributed to cytomegalovirus hepatitis, was given cryoprecipitate because of acquired blood-coagulation abnormalities.

An epidemiologic investigation revealed that the 3 cases of infection had few common exposures. Receipt of cryoprecipitate intravenously before onset of infection was significantly associated with disease, however, when cases were compared with 76 procedurematched controls ($\mathrm{p}=0.007$).

About 100 courses of cryoprecipitate are given each month in the hospital. Single Units of cryoprecipitate are supplied in Fenwall Transfer Packs* at -20 C by a central blood bank. For administration to patients up to 20 units of cryoprecipitate are combined in the hospital's blood bank. To prepare the combined pools, the frozen packs are placed in a 37 C water bath to be gently thawed. They are blotted dry, and the protective tabs covering the administration ports are dried with a clean gauze. Cryoprecipitate pools are generally administered within 2 hours after they have been prepared.

A sample of the cryoprecipitate pool received by the last patient was obtained and cultured, and it grew P. cepacia. Moreover, cultures of water in the warming bath used to thaw the frozen packs were found to contain 1.8×10^{8} P. cepacia per ml , although each day these water baths were cleaned with povodine-iodine, and fresh water was added. The Pseudomonas isolates from the 3 patients, the cryoprecipitate pool, and the water bath had the same antimicrobial susceptibility patterns. Studies are underway to attempt to determine the exact mechanism of contamination.
Reported by FS Rhame, MD, JMcCullough, MD, and the Hospital Infections Br, Bacterial Diseases Siv, Bur of Epidemiology, CDC.
Editorial Note: Infections due to P. cepacia are almost exclusively limited to drug addicts (1), patients with cystic fibrosis, and hospitalized patients. In the last context, they arise

[^0]U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE / PUBLIC HEALTH SERVICE

Pseudomonas cepacia - Continued

because of the organism's ability to proliferate in relatively pure water (2) and in certain dilute aqueous quaternary ammonium disinfectants (3-5). This outbreak and others emphasize the importance of thorough investigation of all nosocomial P. cepacia infections for the possibility of a contaminated common source.

These 3 cases of P. cepacia infection were traced to contaminated pooled cryoprecipitate. The contamination probably occurred during the pooling process after removal of the packs from the contaminated water bath. Even though the packs had been blotted dry, they and the hands of the technician performing the pooling were presumably heavily contaminated with P. cepacia.

Thawing frozen blood products in water baths is widely practiced in blood banks. Preventing further infections of this sort should involve adopting procedures for cleaning water baths to reduce contamination levels and exercising great care to avoid contamination by touch during pooling procedures. A plastic overwrap may be used to protect the packs while in the water bath. Microwave technology is being developed which may allow heating of such items and, in the future, make use of water baths unnecessary.

References

1. Noriega ER, Rubinstein E, Simberkoff MS, Rahal JJ: Subacute and acute endocarditis due to Pseudomonas cepacia in heroin addicts. Am J Med 59:29-36, 1975
2. Carson LA, Favero MS, Bond WW, Petersen NJ: Morphological, biochemical, and growth characteristics of Pseudomonas cepacia from distilled water. Appl Microbiol 25:475-483, 1973
3. Dixon RE, Kaslow RA, Mackel DC, Fulkerson CC, Mallison GF: Aqueous quaternary ammonium antiseptics and disinfectants. Use and misuse. JAMA 236:2415-2417, 1976
4. Frank MJ, Schaffner W: Contaminated aqueous benzalkoniurn chloride: An unnecessary hospital infection hazard. JAMA 236:2418-2419, 1976
5. Weinstein RA, Emori TG, Anderson RL, Stamm WE: Pressure transducers as a source of bacteremia after open heart surgery: Report of an outbreak and guidelines for prevention. Chest 69:338-344, 1976

Current Trends

Results of Culture Testing for Gonorrhea - United States, 1978

In the 12 -month period ending December 31, 1978, a total of $8,641,188$ culture specimens were taken from women as part of gonorrhea-control programs; 403,098 (4.7\%) were positive (Table 1). Although the positivity rates were highest (19.5\%) in venereal disease (VD) clinics, 89% of all tests were performed in other settings. In these settings, culture-positivity rates in women ranged from 1.4% in student health centers to 4.9% for women in correctional or detention centers. Among 1,866,306 women tested by private physicians, 35,573 (1.9%) cultures were positive.

Provisional data indicate that an additional $2,160,529$ women were tested at all types of facilities in January, February, and March 1979, or about 720,176 per month. For this period, the overall positivity rate of cultures from all sources was 4.3%.
Reported by Venereal Disease Control Div, Bur of State Services, CDC.
Editorial Note: Total reported gonorrhea morbidity in the United States increased by 1.1% in 1978 compared to 1977 . The overall positivity rate among women tested for gonorrhea was 4.7% for both 1977 and 1978. However, the number of women tested and the number and percentage with positive tests within different health facilities changed in 1978 for several reasons: more testing of high-risk groups, more emphasis on hospital and health-center testing, and changes in the actual disease incidence or prevalence.

Gonorrhea - Continued

In VD clinics, testing was less frequent in 1978 than 1977 (the number of women tested decreased by 0.9%), but the number of infections detected increased by 5.1%. Rescreening women who had been previously treated for gonorrhea in these clinics might have accounted for these changes.

Testing in health-care facilities other than VD clinics increased by 2.6\% from 1977 to 1978. The greatest increases in testing were within hospital inpatient wards, manpower training centers, community health centers, and group health centers; 152,144 more tests were performed in these facilities, and 3,069 more infections were detected in 1978 compared to 1977.

By contrast, testing in private physicians' offices decreased by 0.8% and was associated with a 6.2% reduction in the number of positive tests. Although several factors might have caused these changes, the most likely explanation is that there was an actual decrease in the incidence and prevalence of gonococcal infection among women seen in private medical practice. It is possible that there has been a shift of higher-risk populations from the private to the public sector of the health-care delivery system. Less likely is that the changes were caused by the selection of lower-risk persons to be tested or by lowered quality control of the culture system.

TABLE 1. Results of gonorrhea culture tests on females, United States,* 1977 and 1978

Reporting source	Number testad		Percent change	$\begin{array}{cc}\text { Number positive } \\ & 1978 \quad 1977\end{array}$		Percent changa	Parcent positive		Percent changa
Health-care providers (excluding VD clinics)	7694114	7501076	+ 2.6	218110	217212	+ 0.4	2.8	2.9	3.4
Health dapt.									
Non-VD clinics	1852081	1815976	$+2.0$	61417	59254	$+3.7$	3.3	3.3	0.0
Family Planning	1310478	1280159	+ 2.4	42722	40802	+ 4.7	3.3	3.2	+ 3.1
Prenatal, ob-gyn	200444	184904	+ 8.4	6288	5582	+ 12.6	3.1	3.0	+ 3.3
Cancer detection	20108	22268	9.7	385	396	2.8	1.9	1.8	+ 5.6
Combination or other	321051	328645	2.3	12022	12474	3.6	3.7	3.8	2.6
Public/private hospital									
Outpatient	1381656	1365615	+ 1.2	62983	61013	+ 3.2	4.6	4.5	+ 2.2
Family planning	210269	247957	- 15.2	6542	8153	- 19.8	3.1	3.3	- 6.1
Prenatal ob-gyn	322731	323954	0.4	10203	10445	2.3	3.2	3.2	0.0
Cancer detection	11434	18334	- 37.6	448	540	-17.0	3.9	2.9	+ 34.5
Combination or other	837222	775370	+ 8.0	45790	41875	+ 9.3	5.5	5.4	+ 1.9
Inpatient	67993	57792	+ 17.7	1628	1400	+ 16.3	2.4	2.4	0.0
Obstetric	3825	2803	$+36.5$	37	51	- 27.5	1.0	1.8	-44.4
Gynecologic	2942	812	+ 262.3	120	27	+344.4	4.1	3.5	+24.2
Combination or other	61226	54177	$+13.0$	1471	1322	+ 11.3	2.4	2.4	0.0
Community health centers	792411	706968	$+12.1$	22667	20776	+ 9.1	2.9	2.9	0.0
Family planning	245095	195498	$+25.4$	4845	3910	+ 23.9	2.0	2.0	0.0
Prenatal ob-gyn	79589	56595	$+40.6$	2055	1475	+ 39.3	2.6	2.6	0.0
Cancer detection	8967	7275	$+23.3$	92	45	+ 104.4	1.0	0.6	+66.7
Combination or other	458760	447600	+ 2.5	15675	15346	+ 2.1	3.4	3.4	0.0
Private physicians Private family-planning	1866306	1880855	- 0.8	35573	37943	- 6.2	1.9	2.0	5.
groups	1077229	1032220	+ 4.4	17445	16966	+ 2.8	1.6	1.6	0.0
Group health clinics	194437	152942	+ 27.1	4101	3392	+ 20.9	2.1	2.2	4.5
Student health centers	204734	206377	- 0.8	2892	3496	- 17.3	1.4	1.7	-17.6
Manpower training agencies	28935	13930	+ 107.7	997	756	+ 31.9	3.4	5.4	-37.0
Industrial screening	1621	3423	- 52.6	55	75	- 26.7	3.4	2.2	+54.5
Military/dependents	77815	76710	$+1.4$	2357	2164	+ 8.9	3.0	2.8	+ 7.1
Correctional detention centers Not specified	$\begin{aligned} & 57312 \\ & 91584 \end{aligned}$	$\begin{array}{r} 64230 \\ 124038 \end{array}$	$\begin{array}{r} -10.8 \\ -\quad 26.2 \end{array}$	$\begin{aligned} & 2823 \\ & 3172 \end{aligned}$	$\begin{aligned} & 3354 \\ & 6623 \end{aligned}$	$\begin{aligned} & -15.8 \\ & -52.1 \end{aligned}$	4.9 3.5	$\begin{aligned} & 5.2 \\ & 5.3 \end{aligned}$	$\begin{array}{r} -5.8 \\ -34.0 \end{array}$
Venereal disease clinics	947074	955334	0.9	184988	176093	+ 5.1	19.5	18.4	$+6.0$
Total all clinics	9641188	8456410	+ 2.2	403098	393305	+ 2.5	4.7	4.7	0.0

*Trust Territory of the Pacific Islands did not report data for January-December 1977.

Epidemiologic Notes and Reports

Two Suspected Cases of Human Rabies - Texas, Washington

Two unrelated cases of suspected rabies have recently been reported to CDC. As of June 26, both patients are comatose and receiving supportive care.

Case 1. An 8 -year-old boy from Piedras Negras, Mexico, was exposed to, but not bitten by, an ill dog on April 20, 1979, and then was bitten on his right hand on May 11 by another dog in Piedras Negras; that dog later disappeared. The boy was healthy until the end of May, when he developed pain in his right shoulder. Several days later the pain worsened, and he developed a sore throat, fever, and dysphagia and was treated with an antibiotic for possible streptococcal pharyngitis by a physician in Piedras Negras. Over the next few days the fever, pain, and sore throat persisted, and he had intermittent episodes of confusion with hallucinations. On June 5 he became acutely agitated, combative, and more confused, developed paralysis of his right arm and generalized weakness, and was hospitalized in Piedras Negras. Two days later the family transferred him to a hospital in San Antonio, Texas. There he was confused, agitated, and aphasic with a right hemiparesis. Over the next few days he became comatose, required intubation and artificial respiration, and developed generalized paralysis. Cerebral angiography, computerized axial tomography, and cerebral spinal fluid (CSF) studies performed on June 8 were normal. On June 9, because rabies was suspected, he was given human rabies immune globulin (HRIG)
(Continued on page 297)

TABLE II. Notifiable diseases of low frequency, United States

	CUM. 1978		CUM. 1879
Anthrax	-	Poliomyalitis: Total	19
Botulism (Nebr. 1)	10	Paralytic (Pa. 1, Iowa 1)	16
Conganital rubella syndrome	28	Psittacosis (Ups. NY 1)	59
Leprosy (Calif. 1)	81	Rabies in man	1
Leptospirosis	14	Trichinosis	65
Plague (N.Mex. 1)	7	Typhus fever, flea-borne (ondamic, murine) (Tex. 2)	19

[^1]TABLE III. Cases of specified notifiable disaases, United States, weeks ending June 23, 1979, and June 24, 1978 (25th week)

TABLE III (Cont.'d). Cases of specified notifiable diseases, United States, weeks ending June 23, 1979, and June 24, 1978 (25th week)

Reporting area	measles (rugeola)			meningacaccal infections TOTAL			MUMPS		PERTUSSIS	RUBELLA		TETANUS CUM. 1878
	1878	CUM. 1978	$\begin{gathered} \text { CuM. } \\ \text { 1878* } \end{gathered}$	1979	CUM. 1978	$\begin{gathered} \text { cum. } \\ \text { 1978: } \end{gathered}$	1878	CUM. 1878	1879	1878	$\begin{aligned} & \text { CUM. } \\ & \text { 1979 } \end{aligned}$	
UNITED STATES	319	10,368	20,679	55	1.538	1.357	304	10.035	47	364	9,514	26
NEW ENGLAND	12	282	1.875	3	74	73	1	352	-	24	1,311	3
Maine	4	15	1.291	-	3	5	-	128	-	-	61	-
N.H.t	$\overline{7}$	38	44	-	8	6	-	4	-	1	111	
Vt.	7	112	24	-	5	2	-	6	-	4	389	-
Mass.	1	12	192	2	20	27	1	28	-	11	430	2
R.I.		103	7	-	5	13	-	23	-	5	81	-
Conn.	-	2	317	1	33	20	-	163	-	3	239	1
MID. ATLANTIC	103	1.209	1,741	10	221	218	25	877	3	92	1,703	5
Upitata N.Y.	60	578	1,167	5	79	66	10	132	2	77	517	1
N.Y. City	42	559	196	2	59	53	3	93	-	9	217	3
N.J.t ${ }^{\text {d }}$		50	63	1	54	45	11	453		6	307	-
P.t.t	1	22	315	2	29	54	1	199	1	-	262	1
E.N. CENTRAL	46	2,669	9.374	8	147	131	159	4,421	36	130	2. 242	2
Ohio	11	183	430	4	54	26	79	1,604	-	14	99	1
Ind.	2	161	159	-	32	23	2	238	-	18	689	-
III.	3	1,206	976	-	3	27	22	804	-	-	145	-
Mich.	20	703	6,470	3	44	44	27	849	36	94	1,102	1
Wis. \dagger	10	416	1.339	1	14	11	29	926	-	4	207	-
W.N. CENTRAL	56	1.401	345	-	39	54	6	605	-	13	380	-
Minn.	33	909	34	-	9	10	-	6		-	34	-
lowa	-	15	51	-	5	9	3	219	-	1	51	-
Mo. \dagger	13	409	7	-	17	23	1	168	-	3	31	-
N. Dak.	-	10	180	-	1	3	-	1	-	-	8	-
S. Dak.	-	1	-	-	2	2	1	4	-	$\overline{5}$	2	
Nabr.	-	-	5	-	-	-	1	6	-	5	172	
Kars.	10	57	68	-	5	7	-	201	-	4	82	
S. ATLANTIC	37	1,501	4.355	10	388	333	16	383	1	32	1,075	6
Del.	-	1	5	-	3	1	1	22	-	1	3	-
Md.	-	7	30	2	34	15	7	67	-	1	23	-
D.C.	$\bar{\square}$	-	47	-	2	1	-	1	-	-	1	
Va .	8	212	2,575	1	55	42	4	73	-	5	166	1
W. Val 1	-	49	961	-	7	8	-	80	-	-	98	3
N.C.	-	104	92	2	54	69	3	57	-	21	484	3
S.C. 1	3	138	188	1	48	21	-	2	-	-	59	
Ga.	1	344	14	3	62	42	-	5	$\overline{7}$	1	7	
Fla.	25	646	443	1	123	134	1	78	1	3	234	2
E.S. CENTRAL	18	156	1.287	1	116	112	35	1,037	1	4	239	4
Ky.	-	23	103	-	22	20	29	822	-	1	56	
Tenn.	-	47	864	-	35	28	6	85	-		77	4
Ala.	18	67	101	1	28	35	-	16	-	3	36	4
Miss.	-	19	219	-	31	29	-	114	1	-	70	=
W.S. CENTRAL	10	808	877	9	268	207	41	1.547	2	6	191	6
Ark.	-	6	14	1	24	17	5	755	-	-	5	1
La.	4	234	307	2	111	80	1	35	-	-	25	$\underline{1}$
Okla.	-	22	11	$\frac{1}{5}$	21	16	-	75	-	-	22	-
Tex.	6	606	545	5	112	94	35	757	2	6	139	4
MOUNTAIN	-	216	207	1	65	31	1	233	-	4	430	
Mont.	-	55	103	-	5	2	-	5	-	-	62	
Idaho	-	4	1	-	5	2	-	8	-	1	186	
Wyo. \dagger	-	-	-	-	1	-	-	-	-	-	$\overline{7}$	
Colo.	-	32	27	-	4	2	-	66	-	-	27	
N. Mex. \dagger	-	30	-	-	4	7	-	7	-	-	6	
Arls.	-	69	18	-	30	11	-	47	-	2	121	
Utah	-	15	44	1	8	4	1	89	-	1	27	
Nev.	-	11	14	-	8	3	-	11	-	-	1	
PACIFIC	37	2,066	618	13	220	198	20	580	4	59	1,943	
Wash. 1	12	1,093	61	4	35	34	2	178	-	-	161	
Oreg.	3	55	136	1	13	12	1	55	-	6	76	
Calif.	20	840	418	8	159	144	16	266	4	50	1.690	
Alaska	1	17	-	-	5	5	-	8	-	-	2	
Hawnii	1	61	3	-	8	3	1	73	-	E	14	
Guam	NA	2	25	-	-	-	NA	6	NA	NA	3	3
P.R.	2	252	162	1	1	2	13	461	-	-	30	3
V.I.	NA	4	6	-	2	1	NA	4	NA	NA	-	
Pac. Trust Terr. t	NA	5	542	-	1	2	NA	16	NA	NA		-

NA: Not available.

- Delayed reports received for 1978 are not shown below but are used to update last year's weakly and cumulative totals.
\dagger The following delayed reports will be reflected in next week's cumulative totals: Measles: Mo. -2, Wyo. +36 , Wash, -4 , Pac. Tr. Terr. +1 ; Men, inf: ${ }^{\text {N }}$ S.C. -1, Wash. +2; Mumps: Pa. -1, Mo. +17; Pertussis: Mo. +5; Rubella: N.H. +2, N.J. +2, Wis. -4, Mo. +8, W.Va. -2 , N.Mex. +1, Pac.Tr.Terr. +1.

TABLE III（Cont．＇d）．Cases of specified notifiable diseases，United States，weeks ending June 23，1979，and June 24， 1978 （25th week）

neportima area	Tueneruosis		¢ıu											$\begin{aligned} & \text { fanise } \\ & \text { anime } \end{aligned}$		
		${ }_{\text {cum．}}$					¢оооониеа									
	\％	198	189	189	${ }_{1989}$			189	${ }_{\text {cima }}$	1978	${ }_{\text {coum }}^{\text {cider }}$	${ }_{\text {come }}^{\text {cimem }}$	1898	（1am	cima	，
Unteg states	669	3，470	${ }^{6}$		204	${ }^{1}$	282	21，171	456， 126	447.531	513	11，524	9，908			
newencland	14	${ }^{369}$			16			29	${ }^{11.747}$	${ }^{1.636}$	10	${ }^{217}$				
								10	（in	${ }_{5}^{512}$						
			1					${ }_{152}^{17}$	${ }^{4} 5696$	${ }_{5}^{51806}$		${ }^{128}$				
com．	2	${ }^{35}$			2			${ }^{525}$	4．805	4.803		5				
Mio．atantic	${ }_{18}^{108}$	${ }_{\text {2，} 181} 180$			30		${ }_{10}^{12}$	${ }^{171}$	${ }^{48} 8.384$	${ }_{48}^{48} 785$			\％ 3			
，		$\substack { 1980 \\ \begin{subarray}{c}{394{ 1 9 8 0 \\ \begin{subarray} { c } { 3 9 4 } } \end{subarray}$		1	${ }_{15}^{15}$			and	come	cosit	né	$\begin{gathered} 1,127 \\ \hline 1254 \\ 234 \\ 304 \end{gathered}$	9，4			
${ }_{\text {En }}^{\text {Eniofertal }}$	${ }^{83}$	${ }^{1876}$			${ }^{15}$			4.065		（10．982	${ }_{7}^{1}$	1	200			
	34							1．353		${ }^{20} 2.5827$	${ }_{20}^{7}$	105	545			
what	$\stackrel{29}{4}$	${ }_{48}^{487}$						${ }^{323}$	－	－${ }_{\text {c }}$			105			
W．n．Cewtral	19	430					19	1．088	21， 4174	22，459		159	23			
为	${ }_{1}^{18}$	－ 36					4	${ }_{\text {150 }}^{190}$		coiche		（22	¢			
$s_{8}^{\text {ouk }}$								S11	${ }^{3} 51$	${ }_{4}^{18}$						
Kamm		5	1		1			${ }_{106} 6$		ci， 3,680		${ }^{23}$				
Satrantic	${ }^{178}$	3．133			${ }^{26}$	${ }^{26}$		4． 538		${ }^{108,597}$			5			
	$\underset{8}{20}$	${ }_{\substack{409 \\ 180}}$					${ }_{1}^{18}$						边			
$\mathrm{va}_{\text {mive }}$	${ }_{20}^{\circ}$				2		${ }_{3}^{37}$	39	－	${ }_{\text {coin }}^{10}$	－	$\underset{\substack { 257 \\ \begin{subarray}{c}{29{ 2 5 7 \\ \begin{subarray} { c } { 2 9 } }\end{subarray}}{ }$	34			
	${ }_{38}^{27}$		1				${ }^{4}$	${ }_{\text {c132 }}^{11}$	（10，029	cisios2	10	${ }_{132}^{227}$	129			
fint	55	${ }_{885}$			11		19	${ }^{121}$		20， 27,697	${ }_{29}^{79}$	$\xrightarrow{796}$	989			
ciss．ental	50	${ }^{263}$	${ }_{12}^{12}$		4			${ }_{\text {c }}^{1.382}$	${ }_{\text {chem }}^{3}$	38．636	－36					
coin	16						¢			cin	$\begin{array}{r} 25 \\ \hline 6 \\ \hline \end{array}$					
			${ }^{28}$													
$\xrightarrow{\text { b }}$	$\stackrel{1}{1}$	13			3		${ }_{27}^{17}$		ciotsai	ciotitil	${ }_{21}^{21}$		cois			
	4								39，${ }^{\text {a }}$ \％ 4	41，874						
moun	16	4			20								8			
								4	$\begin{aligned} & 832 \\ & \hline 680 \\ & \hline 602 \end{aligned}$							
coick		192			1			249	coit			5is	近			
\％	$\underline{-}$	边						（127	\％，9\％6							
Paticic	\％	${ }^{2,215}$		3	${ }^{\text {a }}$											
	112	788								cisiosi						
eneme					$\frac{1}{7}$			94								
				na						－150						
nit Ter．t	$\stackrel{N}{\text { Na }}$			${ }_{\text {Na }}^{\text {N }}$		N		$\stackrel{\text { Na }}{ }$								

－Del Not available．
Thelayed reports received for 1978 are not shown below but are used to update last year＇s weekly and cumulative totals．
The foliowing delayed reports will be reflected in next week＇s cumulative totals：TB：Mich．－2，Ma．－2．S．C．－1，Fla．－4，Guam＋3，Pac．Tr．Terr．＋3；T．Fever
Mont．+4 ，Mo，+3 ；GG：Mo．-65 civ．，Wash．-2 civ．，Guam +4 civ．，+7 mil，，Pac．Tr．Terr．+59 civ．；Syphilis：Minn．-1, Mo．$-6 ;$ An．rabies：Ohio $+1, \mathrm{Ky},+1$ ，
Mont．+4 ．

TABLE IV. Deaths in 121 U.S. cities,* week ending
June 23, 1979 (25th week)

heporitug aren	ml mausis, iy age iymars					TOTAL	HEFIRTIMG AREA	ALL CAUSES, TY AGE (YEARS)					$\begin{aligned} & \text { Pal" } \\ & \text { TOTAL } \end{aligned}$
	ALL	> 8	4508	2544	<1			ALL	265	45.4	25.44	<1	
NEW ENGLAND	000	445	154	33	17	40	S ATLANTIC	1.098	616	311	76	65	37
Bastor, Mexa	173	107	51	6	4	15	Athentis, Ge	109	54	30	7	17	1
Bridyporit Comer	44	24	13	3	4	1	B=itimorn. Md.	205	122	51	20	5	6
Cambridyen Max	28	21	6	1	-	5	Chatore MLC	65	34	18	5	6	4
Fall River, Mass	33	26	4	2	-	-	destsomillu, Pa	90	43	29	10	6	1
Herthord, Connt	49	33	11	3	-	1	Mrami, Pa	97	54	31	3	6	5
Lomel, Mas	32	22	5	1	-	2	Nortolk, Va	62	32	14	5	6	4
Lymm Masa	21	15	4	1	-	-	Pidtmond, Va	73	26	36	6	1	5
Ne.y Botiond, Mess	34	25	7	1	1	2	Smumneh, Ga	44	26	11	4	2	4
Nrom Hen, Cornh	45	31	10	2	-	2	St Peteriburg Pa	75	64	10	1	3	3
Providince, R.I.	70	50	12	4	4	4	Tarmpa, Pla	69	49	15	1	4	3
Sommerily, Mass	7	7	-	-	-	1	Wehionton, D.C	145	75	49	13	6	-
Sprimpricd, Mest	45	26	13	4	1	4	Whimington, Dol	60	35	15	1	3	1
nerefury, Come	35	26	5	4	-	2							
Norchatm, Mex.	50	36	9	1	3	1							
							ES CENTRAL	673	397	191	34	17	28
							Birmingham, Ala	116	62	39	6	4	1
MID. ATLANTIC	2.503	1,619	580	162	84	103	Chattinognat Thar	47	29	9	4	2	3
Albary, MY.	43	31	7	1	2	-	Knowrille Tenn	43	27	11	1	-	
Almatamen Pr	20	16	2	-	-	-	Loomprile, Ky.	140	76	41	7	8	9
Bufitan, MY.	114	71	30	7	5	6	Mruphis, Tunt	132	85	37	3	-	3
Curetor, NL	39	25	6	2	5	1	Mobile Ala	60	39	14	2	1	6
Eirabath, N.	32	23	7	2	-	-	Montromery. All	55	33	17	4	1	2
Erim Pht	24	17	6		-	1	Nestoile Tun	80	46	23	7	1	4
Lrmery. Md	61	37	16	3	2	1							
Nrath R1-	52	22	18	4	5	7							
NY. Ciry. NY.	1.410	907	314	108	46	54	W.S CENTRAL	1. 217	657	325	103	63	29
Pamema, N1	23	16	5	2	-	2	Austion, Tax	61	44	10	2	-	6
Prastorpin Pat	238	150	67	10	7	10	Bunton Rounay La	28	16	6	1	1	1
Pitwherg. Pat	76	45	21	6	3	5	Corpers Chriati, Tex.	28	18	7	1	1	-
Parding Ph	33	21	9	1	1	1	D=Iag Tex	184	92	58	15	6	-
Rachereter, MY.	113	69	26	10	4	9	E Pres, Tex.	51	27	17	3	1	$\bar{\square}$
Solunetedy, MY.	25	19	5	1	-	1	Fort Worth, Ten.	87	56	14	11	3	4
Stration Pat	30	25	5	-	-	1	Hourton, Tex	331	170	88	25	22	4
Sracuan MY.	84	59	21	-	3	-	Little Rock, Art	71	35	18	10	6	2
Tratation NS.	42	28	8	4	1	2	Nam Ormans. La	120	60	38	9	9	-
Unich RLY.	25	20	4	1	-	-	Son Ammenio. Ter.	147	68	49	16	7	3
Youbris, RY.	19	16	3	-	-	2	Sh Tublan Oidn	33 76	23 48	6 14	2 4	2 5	2
EN CENTRAL	2.297	1.408	572	135	90	48							
Alrom Onio	50	34	8	4	3	-	mOUNTAN	499	321	112	28	20	17
Cumbr Obio	31	24	5	-	1	1	Altuquerqua, N. Mer.	44	25	8	7	2	2
Crictin 1	556	317	148	40	33	10	Colne Sprims, Cola.	42	29	8	2	1	7
Cracinisi, Oho	137	86	29	5	8	1	Denver, Coln	111	66	26	6	8	4
Cruelme Otio	170	88	53	13	9	1	Les Vages, Nov.	47	32	11	3	1	-
Cothmitas, Ohio	135	84	27	10	9	2	O-ydm, Unh	14	11	3	-		2
Dryton, Ohio	81	45	24	6	3	2	Phomenc, Ariz	84	53	24	1	1	
Detrait meth	293	185	82	- 15	7	6	Pruba, Coln	14	9	4	1	-	1
Exaring Ind	67	39	21	3	-	1	Sitt Lela City, Uth	63	40	12	3	6	1
Fort Mryma lad	28	16	8	4		-	Trevon, Aris.	80	56	16	5	1	
Gury. lid	34	18	9	4	1	1							
Grad Pupita, Mek	71	48	17	1	4	4							
Lermplin ind	154	87	43	8	8	3	PACIFIC	1. 796	1. 157	387	116	68	54
Mors.a, wix	36	22	7	3	3	3	B-latoy, Codil.	13	10	3			2
	132	87	36	4	1	8	Fremo, Cowif.	78	52^{*}	11	5	5	7
Parial IL	55	32	15	2	1	2	Gindm, Culit.	37	29	5	2	-	2
Roctiond, IP	53	35	6	3	3	3	Honoluru, Hamei	59	37	19	1	-	5
Sorith Band, Ind	35	27	6	1	1	1	Lonam Brah, Caif.	76	38	24	5	4	3
Talada, Onio	105	82	12	6	2	1	Lex Anger, C-Hf.	583	368	125	46	13	15
Yornmbanis Onio	74	52	16	3	1	-	Owdend Calif.	54	34	16	4	-	6
							Pender Colif.	27	23	1	2	1	1
							Prutend Oray	127	100	16	4	6	
WM CEATRAL	716	470	142	39	40	24	Sear mato, Calif.	70	40	16	4	7	2
Des moios loma	64	41	17	1	2	2	Sen Dinos, Comit.	139	84	35	10	5	
Defurt Mrar	52	20	8	2	2	2	Sm Frmeiven Calit.	146	97	31	8	6	2
Reres City, Roms	25	13	5	2	3	-	Son lome Colif.	149	88	38	10	9	
Rumes City, Ma.	135	87	33	5	4	3	Sentis, Werc.	140	91	29	10	8	5
Lereber Netr.	26	15	8	1	1	2		62	38	14	3	4	5
Menempolis, Mina	95	67	17	6	4	2	Troonas Whe	36	28	4	2	-	1
On-le, Netr.	82	6.3	5	5	2	2							
St Loum, Ma.	150	92	24	14	15	7							
5 St Pal. Nin	75	52	15	1	4	2	TOTAL	11.485	7,094	2,774	726	472	380
Windity, Kmpe	32	20	6	2	3	2							

"Mortality data in this thble ave voluntrily raported from 121 cities in the Unitad States, most of which have populations of 100,000 or more. A death is meported by the plece of its cocurrence and by the week that the death certificate was filed. Fetal deaths are not included.

- Pmemomia and influena

mailabla in 4 to 6 merlas
and was started on daily doses of duck embryo vaccine (DEV). On June 11 and June 15, corneal impression, serum, CSF, and neck biopsy specimens were obtained for rabies testing. The first set of specimens was negative except for the serum, which had a rabies antibody titer of 1:7. The corneal impressions collected on June 15 were positive by fluorescent antibody (FA) staining, and the serum had a rabies antibody titer of 1:145. CSF tests for rabies antibody and neck biopsy specimens for virus were negative. Thirtyone contacts of the patient were started on rabies postexposure prophylaxis.

Case 2. An 18 -year-old male from Vancouver, Washington, developed a stiff neck, headache, myalgia, and fever of $101 \mathrm{~F}(38.3 \mathrm{C})$ on June 8, 1979. The next day he was seen at a local hospital emergency room and treated for possible influenza as an outpatient. Over the next few days he became confused and irritable and was seen and admitted to a hospital in Vancouver. That evening he was transferred to another hospital, where he was noted to have a right hemiparesis; computerized axial tomography revealed temporal lobe edema. Two days later, because herpes simplex was suspected, he had a temporal lobe biopsy. The following day an FA test of the biopsy material was read as positive for rabies. The patient subsequently has become progressively obtunded, required intubation, and developed quadraplegia. Examination of CSF obtained on June 12 revealed 200 lymphocytes, 30 red cells, a protein level of $70 \mathrm{mg} / \mathrm{dl}$, and a glucose level of $84 \mathrm{mg} / \mathrm{d}$. CSF, serum, corneal impression specimens, and skin tissue biopsy specimens from the neck were obtained on June 15 for diagnostic tests for rabies. The corneal impression test was positive for rabies by FA; CSF, serum, and the neck biopsy specimens were negative. Seventeen contacts of the patient have been started on postexposure prophylaxis.
Reported by FA Guerra, MD, J Seals, MD, San Antonio, Texas; E Blizard, MD, R Fisher, MD, R Kim, MD, Vancouver, Washington; RF Bell, San Antonio Metropolitan Health District, San Antonio, Texas; CR Webb, Jr, MD, State Epidemiologist, Texas State Dept of Health; V Ashby, F Christman, J Taylor, MD, State Epidemiologist, Washington State Dept of Social and Health Services; Viral Zoonosis Br, Virology Div, Bur of Laboratories, Respiratory and Special Pathogens Br, Viral Diseases Div, Bur of Epidemiology, CDC.

Editorial Note: The presumptive diagnosis in both cases is based in part on a corneal impression test. Animal studies and other studies in humans indicate it is a specific test but positive in only about 50% of documented cases $(1,2)$. In the first case described here, the diagnosis is further supported by a rabies antibody titer higher than would be expected 7 days after HRIG had been given and DEV initiated. In the second case the diagnosis is also based on a brain biopsy, read as positive for rabies by FA. In both cases, the diagnosis must be confirmed by further studies, such as virus isolation from saliva, FA staining of neck biopsy specimens or brain tissue, or demonstration of high rabies antibody titers in CSF or serum.

In the first case, the patient was bitten by a dog and also lives in an area currently having an epizootic of canine rabies (3). In the Washington case, however, no definite exposure history could be identified, and the region from which the patient comes has little documented rabies. In the past 5 years, no animals have been documented to be rabid in the patient's county of residence; the only animals documented to be rabid in the surrounding counties have been bats. The second case, coupled with 3 other recent cases $(4,5)$, again highlights the need to consider rabies in a diagnosis of progressive severe encephalitis.

References

1. Koch FJ, Sagartz JW. Davidson DE, Lawhaswasdi K: Diagnosis of human rabies by the cornea test. Am J Clin Pathol 63:509-515, 1975

Rabies - Continued

2. Schneider LG: The cornea test: A new method for the intra-vitam diagnosis of rabies. Zentralbl Veterinaermed 16:24-31, 1969
3. MMWR 28:256, 1979
4. MMWR 28:75, 1979
5. MMWR 28:109, 1979

Death from Measles, Possibly Atypical - Michigan

A 13-year-old girl died on February 18, 1978, after being hospitalized at University Hospital, Ann Arbor, Michigan, with a diagnosis of measles encephalitis and pneumonia. The patient had been vaccinated in 1966 or 1967 with 3 injections of killed measles vaccine.

One week before admission, and 10 days after a known measles exposure, she developed fever, headache, chills, cough, rhinorrhea, and severe vomiting. A fine rash appeared on her arms and spread to her trunk and face. She was seen by her physician, who diagnosed atypical measles. A week later, on January 23, her fever increased, and she had her first seizure. She was seen in the emergency room of a community hospital and treated with intravenous diazepam, but seizures persisted, and she required intubation. Because of the character of the rash, a diagnosis of meningococcal meningitis was considered, and the patient was transferred to University Hospital in Ann Arbor.

Upon arrival, she was treated with intravenous penicillin and hydrocortisone. Despite anticonvulsant therapy, she continued to have focal and then generalized seizures. Examination was remarkable for rales throughout both lung fields, a petechial rash over the face, and a fine, blanching, maculopapular rash over the entire body. A pustular component was also noted. Admission laboratory findings included a white blood cell count (WBC) of $14,500 / \mathrm{mm}^{3}$ and a normal platelet count. Lumbar puncture (LP) revealed 2 red and 9 white blood cells $/ \mathrm{mm}^{3}$. The total protein level was $104 \mathrm{mg} / \mathrm{dl}$, and the glucose level was $50 \mathrm{mg} / \mathrm{dl}$. Chest X ray showed left lower lobe and perihilar infiltrates. Repeat LP 1 day after admission was essentially unchanged. A final LP on the 14th hospital day showed normal chemistries and cellular elements.

On January 23 and again on February 9. 1978, measles antibody titer in the patient's serum, determined by immunofluorescent antibody testing (IFA), was 1:4,096. Measles antibody titer from her cerebral spinal fluid, also determined by IFA, was $1: 32$ on January 23 and February 4. Attempts to isolate virus from throat washings, urine, and from unstimulated lymphocytes were unsuccessful. Over the next several days, the rash began to fade, but the patient remained comatose. She died on the 21st hospital day.
Reported by JV Baublis, MD, PhD, Dept of Pediatrics, University of Michigan Hospital, Ann Arbor; VJ Turkish, DO, Ypsilanti; N Hayner, MD, State Epidemiologist, Michigan State Dept of Public Health; Immunization Div, Bur of State Services, CDC.
Editorial Note: A large number of cases of what has come to be called atypical measles have been reported since its first description in 1965 (1). Most cases have occurred in persons who had previously received inactivated (killed) measles vaccine, 1.8 million doses of which were distributed in 1963-1967 (2). Killed vaccine was usually given in a series of 2 to 4 doses at monthly intervals; the final dose was often live (Edmonston B) measles vaccine (for example, killed+killed-live sequence).

Atypical measles characteristically consists of a prodrome of high fever, usually without cough or coryza, followed by development of a polymorphic rash, which begins on the distal extremities and spreads centrally $(1,3)$. Pneumonia is common, as is abdom-

Measles - Continued

inal pain $(1,3)$. Although these patients have appeared ill, association with encephalitis or with fatal outcome has not previously been reported.

Inactivated (killed) measles vaccine was withdrawn from use in part because of reports of atypical measles but also because immunity after this vaccine series was found to wane rapidly (4). Waning immunity has not been noted in persons who received only the live Edmonston B measles vaccine (with or without simultaneous immune serum globulin), which also became available in 1963, or in those persons who have received the more recent, further attenuated virus vaccines. These persons do not need reimmunization provided they were immunized at or after 12 months of age $(5,6)$. Persons who received only the killed vaccine series should be reimmunized unless they have already received a dose of live measles vaccine at least 3 months after their last dose of killed vaccine $(5,6)$. This recommendation is made, despite the occasional occurrence of marked local reactions in revaccinees, because of the potential severity of atypical measles (7). This teenager had not been reimmunized.

Physicians and clinics should continue efforts to ensure that their pediatric and adult patients have proof of adequate immunization against measles. None of 6 children previously reported to have fatal measles in 1978 (8) had been immunized according to current recommendations.
References

1. Rauh LW, Schmidt R: Measles immunization with killed virus vaccine. Am J Dis Child 109:232237, 1965
2. CDC: Measles Surveillance Report No. 10, 1973-1976. Issued July 1977
3. Nichols EM: Atypical measles syndrome: A continuing problem. Am J Public Health 69:160-162, 1979
4. Fulginiti VA, Arthur JH: Altered reactivity to measles virus. J Pediatr 75:609-616, 1969
5. Advisory Committee on Immunization Practices: Measles prevention. MMWR 27:427-430, 435437, 1978
6. American Academy of Pediatrics: Report of the Committee on Infectious Diseases, 8th ed. Evanston, Illinois, AAP, 1977
7. Krause PJ, Cherry JD, Naiditch MJ, Deseda-Tous J, Walbergh EJ: Revaccination of previous recipients of killed measles vaccine: Clinical and immunologic studies. J Pediatr 93:565-571, 1978
8. MMWR 27:424-425, 1978

[^2]U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE PUBLIC HEALTH SERVICE / CENTER FOR DISEASE CONTROL ATLANTA, GEORGIA 30333 OFFICIAL BUSINESS

Postage and Fees Paid
U.S. Department of HEW

HEW 396

Director, Center for Disease Control William H. Foege, M.D.
Director, Bureau of Epidemiology Philip S. Brachman, M.D.
Editor
Michael B. Gregg, M.D.

Managing Editor

Anne D. Matner, M.A.

> 9 9́1906
> Mrs Mary Alice Mills
> Director, Library
> $1-408$

[^0]: - Use of trade names is for identification only and does not constitute endorsement by the Public Health Service, U.S. Department of Health, Education, and Welfare.

[^1]: - Dalayad reports recaived for calendar year 1978 are used to update last year's weekly and cumulative totals.
 *"Medians for gonorrhea and syphilis are based on data for 1976-1978.

[^2]: The Morbidity and Mortality Weekly Report. circulation 90,000 , is published by the Center for Disease Control, Atlanta, Georgia. The data in this report are provisional, based on weekly telegraphs to CDC by state health departments. The reporting week concludes at close of businass on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday.

 The editor welcomes accounts of interesting cases, outbreaks, environmental hazards, or other Dublic health problems of current interest to health officials. Send reports to: Center for Disease Control, Attn: Editor, Morbidity and Mortality Weekly Report, Atlanta, Georgia 30333.

 Send mailing list additions, deletions, and address changes to: Center for Disease Control, Attn: Distribution Services, GSO, 1-SB-36, Atlanta, Georgia 30333. When requesting changes be sure to give your former address, including zip code and mailing list code number, or send an old address label.

